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The vorticity-velocity formulation of the Navier-Stokes equations 
is extended to the solution of three-dimensional compressible fluid 
flow and heat transfer problems. The basic governing equations are 
expressed in terms of three Poisson-like equations for the velocity com- 
ponents together with a vorticity transport equation and an energy 
equation. The resulting seven coupled partial differential equations are 
solved by a finite difference method on a single grid and a discrete solu- 
tion is obtained by combining a steady-state and a time-dependent 
Newton's method. Once a converged solution is obtained, one of the 
velocity equations can be removed from the system and replaced by the 
continuity equation and a "'conservative" solution is obtained by using 
the previous solution as a starting estimate for Newton's method with 
only a few additional iterations, The numerical procedure is evaluated 
by applying it to natural and mixed convection problems. The formula- 
tion is found to be stable at high Rayleigh numbers and it may be 
applied to a wide variety of f low and heat transfer problems. © 1993 
Academic Press, Inc, 

1. INTRODUCTION 

The present work's principal aim is to develop a numeri- 
cal model for the study of momentum and heat transfer 
phenomena in fluid flows that may arise either from fluid 
dynamics or combustion problems. In particular, it was 
motivated by our interest in fluid flow and growth rate 
uniformity in a chemical vapor deposition reactor. Two 
important features of such problems have to be accounted 
for. First, the flow phenomena are highly complex and a full 
three-dimensional study is necessary for the fluid motion to 
be properly understood [1, 2]. Due to the large amount of 
computational time and storage requirements needed in 
such systems, these problems have often been tackled using 
a two-dimensional model; the basis for such an assumption 
being that if one of the cross-stream dimensions of the en- 
closure is "large" enough, side-wall effects may be neglected. 
This assumption will not be made in the present work. 
The second feature of such problems is that, due to large 
variations in the temperature in the flow domain, the den- 
sity can vary by as much as a factor of three which implies 
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that compressibility cannot be neglected. In addition, the 
temperature gradient may result from chemical reactions 
present in the system. As a consequence, the Boussinesq 
approximation cannot be made, since the effect of tem- 
perature on density may not be confined to the body force 
term of the momentum equations. 

There are three different approaches that have been 
undertaken to solve the set of Navier-Stokes equations. 
One approach is the streamfunction-vorticity formulation 
which has long been used to solve two-dimensional incom- 
pressible flow problems [3, 4]. Indeed, in two dimensions, 
this method is attractive because, first, it eliminates the 
coupling associated with the presence of the pressure in the 
momentum equations; second, it reduces the number of 
equations to be solved by one; and, third, it also has the 
important advantage that continuity is explicitly satisfied 
locally. However, the specification of boundary conditions 
meets with difficulties when one attempts to specify vorticity 
boundary values. Indeed, the velocity boundary conditions 
provide two sets of boundary conditions on the streamfunc- 
tion and none on the vorticity. A boundary condition for the 
vorticity at the wall in terms of the streamfunction may be 
derived, for instance, if the vorticity is supposed to vary 
linearly away from a no-slip wall I-4]. A complete account 
of such boundary conditions and related problems is well 
documented by Roache [5]. More recently, some new 
schemes have been developed in which the vorticity bound- 
ary conditions are of integral (non-local) type instead of 
boundary-value (local) type [6]. These integral conditions 
on the vorticity provide the necessary number of linearly 
independent equations needed to close the system. These 
conditions were extended later [7]  for time-dependent 
problems using a method which exhibits vorticity creation 
on the boundary, leading also to explicit boundary condi- 
tions for the vorticity of an integral-differential nature. 

In the three-dimensional case, although the existence of 
the analogue of the streamfunction, referred to as the vector 
potential, had been known for over a century, its first 
successful implementation was not achieved until Aziz and 
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ttellums [8] solved a natural convection problem using this 
method. The main reason for such a delay is due mostly to 
the increased computer storage requirements and to the 
determination of a set of suitable boundary conditions for 
the vector potential. Such boundary conditions were first 
derived for confined flow problems [9] and later extended 
through the use of an additional scalar potential to account 
for the through-flow velocities [ 10]. Some further problems 
related to this scalar-vector potential formulation are 
discussed in [11, 12], where it is proposed to introduce an 
auxiliary solenoidal velocity field instead of the scalar 
potential. Some recent successful implementations of the 
vorticity-vector potential formulation include natural 
convection problems [2] and inlet and indraft wind tunnel 
simulations [13]. The use of a streamfunction-vorticity 
transport procedure for three-dimensional external flows 
has also been reported [14]. 

Alternatively, numerical methods using primitive vari- 
ables have been developed and successfully implemented 
in different geometries of practical interest [15-18]. The 
popularity of these methods stems primarily from their 
relatively straightforward extension to three dimensions 
and to turbulent flows. In the primitive variables formula- 
tion, the velocity field is computed using the momentum 
equations and the pressure field is recovered from the 
continuity equation. The continuity equation may also be 
replaced by a Poisson equation for the pressure obtained by 
taking the divergence of the momentum equations [19] 
with suitable boundary conditions [20]. As a result of the 
difference in nature of the governing equations, the discrete 
pressure field has to be determined in a manner consistent 
with the discrete continuity equation. This can be achieved 
to machine zero on a staggered grid. However, staggered 
mesh schemes do also have drawbacks in complex 
geometries, in non-orthogonal curvilinear coordinates, and 
when using complex numerical techniques such as locally 
adapted grids or multigrid methods [21]. As a conse- 
quence, much work has been done recently to develop new 
computational methods to solve the two-dimensional 
incompressible Navier-Stokes equations in primitive 
variables form on a single grid 1-21 25]. However, the 
extension of such procedures to three-dimensional com- 
pressible cases may still yield some complications. 

The third approach that may be adopted, the vorticity- 
velocity formulation, is a relatively novel formulation which 
is sometimes called hybrid because it uses variables of both 
previous methods. Results using the vorticity-velocity 
formulation have been reported for incompressible flows 
in both two [26 30] and three dimensions [30-32] 
and a finite-element formulation for the vorticity-velocity 
approach has also been presented [33]. In spite of the 
increased computer storage requirements with respect to the 
primitive variables approach, this formulation is attractive 
because it allows replacement of the first-order continuity 

equation with additional second-order equations, thus 
allowing an implementation on a single grid. Whereas the 
streamfunction-vorticity approach also accomplishes the 
same replacement in two dimensions, the vorticity-velocity 
formulation can be more easily extended to three dimen- 
sions and more accurate local boundary conditions for 
the vorticity can be derived in a numerically compact 
way--values of the vorticity on solid boundaries are 
calculated by means of the derivatives of the velocity. 
Furthermore, as shown in our numerical experiments, the 
convective terms in the off-diagonal blocks of the Jacobian 
matrix, which exert a strong influence in a streamfunction- 
vorticity approach, disappear. 

With an eye towards future applications of practical 
engineering interest, such as steady-state multidimensional 
flames and steady-state gas flow simulations inside a chemi- 
cal vapor deposition reactor, we adopted the vorticity- 
velocity formulation of the Navier-Stokes equations in the 
present work. The governing equations are discretized on 
a single grid so that the numerical method can easily be 
combined in the near future with multigrid and/or locally 
adapted grid techniques. In this paper, the formulation of 
[32] will be extended to the case of three-dimensional, 
laminar, compressible problems. A potential setback of this 
formulation is that the pressure is not directly available 
from the equations. Once the velocity field is obtained, a 
Poisson equation can be derived for the pressure by taking 
the divergence of the momentum equations. However, in the 
low Reynolds number combustion applications in which 
we are interested, the variations of the pressure may be 
neglected through the flow domain so that the elimination 
of the pressure is not critical. 

In the next section, the Navier-Stokes and energy equa- 
tions are transformed into equations for the vorticity, 
velocity, and temperature and the boundary conditions are 
discussed. The numerical method is developed in Section 3. 
Numerical results for natural and mixed convection 
problems are then presented in Section 4 and compared to 
previous numerical and experimental work. 

2. P R O B L E M  F O R M U L A T I O N  

2.1. Governing Equations 

The transport equations defining the conservation of 
momentum, energy, and continuity have been discussed 
previously [34]. We restate here the equations of motion 
and energy for steady laminar flow making the reasonable 
assumption that viscous dissipation may be neglected. The 
divergence of a vector is written V. ( ) except for V- r which 
represents the divergence of the tensor r. The gradient of a 
scalar quantity is written V(). 
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Continuity, 

V .  (pu) = O, 

Conservation of  momentum, 

p g -  Vp + V . r = p(u . V)u, 

which was derived by neglecting some first-order and all 
second-order derivatives of the viscosity. This equation has 

(1) the advantage that it can be easily used in a finite element 
approach while still keeping some viscosity derivatives 
and that it only involves second-order derivatives of the 
vorticity. Finally, since ~ is solenoidal, the term V x (~ x u) 

(2) may also be expanded as 

Conservation of  energy, 

V. (k VT) = pCp(U. V) T, (3) 

where p is the density, u is the velocity vector, g is the 
gravitational acceleration, p is the pressure, ~ is the viscous 
stress tensor, k is the thermal conductivity, and Cp is the 
specific heat capacity. The viscous stress tensor may be 
written, while neglecting the bulk viscosity coefficient, 

8u, 8u: 
e,j = ~xj + ~ x  i , (4) 

where # is the viscosity and ~ the identity tensor. We 
introduce the vorticity vector ~ given by 

~=Vxu,  (5) 

or in component form 

8U 3 8U 2 8U 1 8U 3 8U 2 8U 1 
~1 8y 8z ' ~2 8z 8 x '  ~3 8x 8y ' 

(6) 

where u = (Ux, U2, U3) and ff = (if1, ~2, ~3). 
To form the vorticity transport equation, we take the curl 

of the momentum equations, which eliminates the pressure 
gradient term from (2) and we replace the resulting V x u 
terms by ~. This yields the vorticity transport equation in 
the following form: 

- - ~  V2~ --g]~ x [-2V(V. u) - V  x ff] 

- V x  [ e . V u ] - V p x  g 

+ V p x  E(u.V)u] +pEVx [ .~xu) ]=0 .  (7) 

This equation contains all the first- and second-order 
derivatives of the viscosity (which may depend on the tem- 
perature) and does not involve any approximations. In 
order to assess the importance of the viscosity derivatives in 
Eq. (7), we also considered in our numerical experiments 
the simplified form of the vorticity transport equation, 

V x ( ~ x u ) = ( u . V ) ~ - ( ~ . V ) u + ( V . u ) ~ ,  (9) 

so that another possible form of the vorticity transport 
equation is 

Vx E/IVx ~] +Vp x E ( u ' V ) u -  g] 

+ p [ ( u . V ) ~ - ( ~ . V ) u + ( V . u K ] = o .  (lO) 

In this equation, several dominant physical effects are 
explicitly represented. Solid boundary walls act as a source 
(or sink) of vorticity, which is diffused and convected, 
respectively, by the V2# and (u- V) ~ terms. For three-dimen- 
sional flows, the additional term (~.V)u represents the 
stretching of the vortex lines due to the velocity field and 
buoyancy forces act through the V x p terms. 

Two approaches can be considered to calculate the 
velocity field. One may treat Cauchy Riemann (CR) equa- 
tions for the velocity directly as a system of first-order 
partial differential equations. The Cauchy-Riemann system 
satisfied by the velocity field is 

V x u = ~  

V .  (pu) = o, 

and its solution uses an iterative scheme in which the 
solenoidal vorticity field is first obtained using a discrete 
version of the Helmoltz decomposition theorem [31]. The 
other possibility is to obtain the velocity field directly from 
Poisson equations derived by taking the curl of Eq. (5) 
[26 28, 32]. This second approach is more attractive 
because the coupled equations for the velocity and vorticity. 
can then be solved simultaneously at each grid point. A set 
of three Poisson-like equations for each component of the 
velocity vector is derived by taking the curl of the vorticity 
and using the continuity equation 

V2U = - - V x  ~ "~ V ( V - u )  

Vx [/~Vx # ] - V p  x g 

+ V p E ( u . V ) u ] + p [ V x ( ¢ x u ) ]  =0,  (8) 
= , 1 2 ,  
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The final set of elliptic equations to be solved is then 

#V2~+V/~x [ 2 V ( V - u ) - V x  ~] + V x  [~.V/~] 

= V p x  [(u.V)u-g] + p E V x  (~ x u)], 

V- (k VT) = pcp(u -V) T. 

(13) 

One point of the above formulation deserves particular 
attention. Although the continuity equation was assumed to 
be satisfied in the derivation of Eq. (12), it is not explicitly 
guaranteed as a result of the computation. In fact, con- 
sidering ~b = (1/p)V. (pu) one can easily see by taking the 
divergence of (12) that 

(14a) 

or 

V2~b = 0 (14b) 

inside the computational domain, so that from the "maxi- 
mum principle," ~b should be maximal at a boundary [28 ]. 
However, the discrete form of (14) may not hold unless a 
staggered grid arrangement is used [30]. Since we wanted 
to discretize the equations on a single grid for the reasons 
discussed in the Introduction, we developed the following 
alternative approach. The discretization of Eq. (12), 
together with the continuity equation (1), leads to an over- 
determined set of algebraic equations since there are four 
equations for only three unknowns. For a given vorticity 
field, two velocity components could be determined through 
Eq. (12), whereas the last one could be computed through 
the continuity equation. Hence, in order to check the 
consistency of any solution of (13) with the continuity 
equation (1), we used the following two-step algorithm 

Step (i). Solve Eqs. (13), 

Step (ii). Once a converged solution is obtained, one of 
the velocity equations (12) is removed and replaced by the 
continuity equation. 

The choice of the velocity component to be removed may 
be problem-dependent and, in general, the component 
which is expected to undergo the most significant changes is 
removed. The issues related to this second step will be dis- 
cussed in more detail when numerical results are presented 
in Section 4. 

in Fig. 1. On solid walls, the no-slip condition is enforced on 
the velocity field by setting 

ul = 0, u2 = 0, u3 = 0. (15) 

If any inflow boundary is present, the velocities are set to 
the inlet velocities through the use of standard Dirichlet 
boundary conditions. On any outflow boundary, all normal 
derivatives are set to zero to simulate fully developed flow. 
As motivated in [32], the vorticity is computed on no-slip 
boundaries using Eq. (6), where only the normal velocity 
derivatives are kept, Assuming the six boundaries $1 
through $6 shown in Fig. 1 to be no-slip walls, we have 

On S 1 and $6, 

~U 3 ~U 2 

On S 2 and Ss, 

Ou3 ~Ul (16) ~1 =-'~--y, ~2 = 0 ,  ~3-- a y '  

On S 3 and $4, 

~U 2 ~U l 
f f l -  ~2=- ;  - ,  G =0- & ,  OZ 

For inflow boundaries, the inlet vorticity should incor- 
porate two terms. The first one is the vorticity brought in by 
the entering gas and the second one takes into account the 
velocity field inside the domain and is computed using 
inward normal derivatives of the velocity at the inlet, given 
by (16). The boundary conditions on the temperature are, in 

,lg 

2.2. Boundary Conditions 

To complete the specification of Eq. (13), boundary con- 
ditions must be applied to all sides of the domain illustrated 

~4 

FIG. 1. The solution region and coordinate orientation; indices for 
opposite boundaries sum up to seven. 
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comparison, simpler. We may either specify the temperature 
or the heat flux at a surface, thereby imposing a Dirichlet or 
a Neumann boundary condition on the temperature. 

3. METHOD OF SOLUTION 

Our goal is to obtain a discrete solution of the governing 
equations on a three-dimensional tensor-product mesh J# 
with elements whose sides are parallel to the x, y, and z 
directions. Since the flow phenomena often exhibit recir- 
culation effects, there may not be any direction in the flow 
domain for which the velocity component is always positive 
or zero. Hence, the governing equations are elliptic and a 
numerical iterative procedure must be employed for their 
solution. Computationally, we combine a steady-state and 
a time-dependent solution method. The time-dependent 
approach is used to help obtain a converged numerical 
solution which will then be used as a starting estimate for 
the steady-state solution procedure. 

3.1. Finite Difference Approximations 

The set of governing equations and the boundary condi- 
tions are discretized using finite difference approximations. 
Mesh point variables are typically denoted by ~b i'j'k but 
arguments are omitted when they have their default value i, 
j, or k; thus ¢ i - '  = #-~'J'k. In the following presentation, 
we will assume the mesh to be uniform. The restriction is 
not necessary but it simplifies considerably the notation. 
Standard central differences are used throughout for the 
first- and second-order derivatives, except for the convective 
terms for which upwind differences may be used. Upon 
introducing the notation 

~ i+  l12 @t--  1/2 
6 ~  = 

Ax 

~ i +  1/2 ~i--  1/2 

V x ~ - -  + 
2 

(17) 

first-order and second-order derivatives are discretized by 

= 6x Vx ~ = -2-Jx ' 

-j-7  ) = a , a ., - a x = 

( 1 8 )  

If the second derivative terms include a coefficient a, the 
discretization is given by 

1 _ . a , + ,  + a ' ) ( #  + '  - #) 
2Ax 2 ~ 

- -  (ai+ai-l)(oi_~ji-1)), (19) 

whereas for cross derivatives we have 

& a = a , v x { a 6 , v y ( O ) }  

1 
- 4AxyA-- ( a l +  1, j (~ i+  l , j + l  __ ~ , +  l , j--  1) 

- a '  l'J(4bi l " J+ l -~b ' - l ' J - ' ) ) .  (20) 

If the continuity equation is used for one of the velocity 
components, say u3, the first two terms are discretized 
with centered differences and the last one using upwind 
differences 

pkuk __ p k  - l u g -  1 

fixVx(pUl)+6yvy(pu2)+ 3 AZ --0, (21) 

where the upwind difference is used to increase the efficiency 
of the linear algebra solution method. 

For the vorticity boundary conditions, the normal 
derivatives on the wall are discretized with a first-order 
backward or forward difference. Rather than introducing 
the velocities at a distance 2h from the wall, the vorticity at 
a distance h from the wall is used [-32]. For instance, at the 
top wall $3 shown in Fig. 1, corresponding to z = k, we have 

~k 2 k 1 ~'k-- 1 
g l  ~ h b / 2  - - g l  ' 

(k 2 k 1 (k--l, 
2 ~ - - h / ' / i  - 2 

~-k 
g3 = 0 .  

(22) 

3.2. Newton's Method 

In the previous section, the problem of finding an analytic 
solution to the set of governing equations (13) was con- 
verted into one of finding an approximation to this solution 
at each point (xt, yj, Zk) of the mesh. Hence, with the finite 
difference equations written in residual form, we seek the 
solution of the system of nonlinear equations, 

The definition of the operators 6y, b=, Vy, v~ is similar. F (U)=0 .  (23) 
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The system in (23) is solved by Newton's method, which has 
been proven to be an efficient tool to solve strongly coupled 
sets of equations [353. This leads to the iterations 

J ( U " ) ( U n + ~ - U ~ ) =  - ; t "F(U~) ,  n = 0 ,  1,2 ..... (24) 

derivatives are present in the equations, only the seven 
block-diagonals, 

OFi, J,k OF+_~.J ,k  OF~,+J,k ~Fi, J,+-k 
#Ui, j, k, OUr, j, ~ , OUi, j, k , ~U~,j, k , (26) 

where J ( U ' ) =  3 F ( U ' ) / ~ U  is the Jacobian matrix and 2" 
is the nth damping parameter [36]. Newton's method 
will converge, providing that the starting estimate U ° is 
sufficiently close to U, the solution of (23). The Newton 
iterations continue until the size of II U" + 1 _ U" bl 2 is reduced 
beyond a given tolerance (typically 10-6). 

We anticipate that the formation of the Jacobian and its 
factorization will account for a considerable part of the cost 
of the numerical method. Therefore, a modified Newton's 
method is used in which the Jacobian is re-evaluated only 
periodically, according to whether the rate of convergence is 
fast enough. The rate of convergence is tested as described 
in [37]. If it is too slow, we use new Jacobian information, 
whereas if it is acceptable, we continue performing modified 
Newton iterations. 

3.3. Linear Algebra 

The Jacobian matrix is evaluated numerically rather than 
analytically. We form several columns of the Jacobian 
simultaneously, using vector function evaluations where all 
the i,j, k nodes of the mesh corresponding to the same value 
of the parameter 

= ( i+  3 j+  9k) mod 27 (25) 

are perturbed simultaneously [38]. Once the Jacobian as 
formed, the resulting linear system is solved using a block- 
line SOR method. One of the three grid line directions, say 
x, is chosen for a direct solution method using an efficient 
block-tridiagonal matrix algorithm. SOR iterations are 
performed along the two remaining directions. The choice 
of the line direction may be problem-dependent and, in 
general, it is guided by the fact that for a direct inverse 
matrix algorithm, the values of the solution along the 
chosen lines are immediately affected by the values at 
the two opposite boundaries connected by the grid lines. 
A block-plane matrix algorithm could also have been used, 
but it would have required the partial fill-in of the Jacobian, 
which was not desirable from a storage point of view. 

We point out that the spatial discretization used in form- 
ing (23) leads to a Jacobian matrix which can be written in 
a block 19 diagonal form. We denote by U i'j'k the vector 
formed by the seven unknowns (ul, u2, u3, ~1, if2, ~3, T) 
at node i, j, k and by F i'j'k the array formed by the seven 
residuals at node i, j, k. It is readily seen that, if no cross 

are nonzero in the Jacobian matrix, whereas if cross 
derivatives are present, the following 12 block-diagonals are 
also nonzero 

OF+_i, +_J,k ~F+_i,J, +_k ~FZ, +_J, ++_k 

~Ui.J.k OUi, J.~ , #Ui, j,~ 
(27) 

We point out that cross derivatives appear in the equa- 
tions only through the density in Eq. (12) so that the off- 
diagonal entries (27) may be considered as "perturbations" 
of the full Jacobian. Hence, one expects Newton iterations 
still to converge if they are performed using a "partial" 
Jacobian formed only with the seven block-diagonals given 
by (26) and incorporating none of the entries listed in (27). 
This procedure ultimately leads to the same solution as 
from (14), since only the iteration matrix has been changed 
in the procedure. Its potential setback may be a slower con- 
vergence rate and more iterations may be needed to obtain 
a converged solution. But, on the other hand, it alleviates 
considerably the computer storage requirements, so that 
finer grids can be used. The procedure to evaluate the 
Jacobian can be further simplified as follows. Instead of 
splitting the mesh nodes into 27 independent groups, we 
perturb simultaneously all the i, j, k nodes that correspond 
to the same value of the parameter fi = ( i+  2 j+  3k) mod 7 
and thereby form an "approximate partial" Jacobian. While 
this procedure obviously shares the same potential risks 
as the previous one, the "approximate partial" Jacobian 
requires much less CPU time to be evaluated since the per- 
turbed residual (23) in vector form is computed only seven 
times. Obviously, the optimal strategy for the evaluation of 
the Jacobian matrix may be problem dependent and a com- 
plete discussion of its applications to general elliptic systems 
is beyond the scope of this paper. In both test problems 
considered in Section 4, Newton's method was found to be 
fairly insensitive to the neglected off-diagonal terms, due to 
the Poisson-like form of the seven governing equations. 
These aspects will be further discussed in Section 4. 

3.4. Pseudo-Transient  Iterations 

We apply a pseudo-transient iteration to bring the 
starting estimate into the convergence domain of Newton's 
method. The original nonlinear elliptic problem is cast into 
a parabolic form by appending a false transient term ~U/Ot 

581/105/1-5 
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to the left-hand side of (23) [2]. For the internal nodes, a 
fully implicit transient scheme is employed by solving 

U,~ + l _ U" 
. Y ( U " + I ) = F ( U n + I ) +  .On+ 1 =0,  (28) 

where for a function ~b(t), we define q~n = ~b(t n) and where the 
time step is C + 1 = t n + 1 _ t n. At each transient iteration, we 
solve system (28) using again the modified Newton's 
method, the main difference being that the diagonal of the 
Jacobian is weighted by the quantity 1/r "+1. Thus, the 
resulting linear system can be made diagonally dominant by 
an appropriate choice of C + 1 and only a few SOR iterations 
are needed for its solution. We also point out that the tran- 
sient iterations will yield a numerical solution procedure 
that is in general less sensitive to the initial starting estimate 
than if Newton's method were applied directly. Hence, when 
the steady-state equations are ultimately solved, only a few 
additional Newton iterations are needed to obtain the 
numerical solution. 

It should be mentioned that any attempt to use the 
continuity equation instead of one of the elliptic velocity 
equations starting with an initial guessed solution did not 
meet with any success. On the contrary, once a converged 
numerical solution of (13) is obtained, one of the velocity 
equations is removed and replaced by the continuity equa- 
tion. Newton's method can be applied successfully to this 
new set of equations and only a few more iterations are 
needed to get the final solution. In fact, we believe that the 
convergence domain of Newton's method @ is much smaller 
if the continuity equation is used and hence the solution has 
to be brought into ~ by solving first the fully elliptic 
system (13). 

4. RESULTS AND DISCUSSION 

In this section, we apply the vorticity-velocity formula- 
tion and the computational method discussed in Section 3 
to three-dimensional natural and mixed convection 
problems. All the physical properties have been considered 
as temperature-dependent and have been computed using 
the procedures discussed in [39] for a hydrogen flow. The 
density was computed using the perfect gas law, assuming 
the pressure to be constant. All the computations were 
carried out on a Multiflow Trace 14/300 computer and on 
an IBM RS6000 Model 550 for the fine 41 x 41 x 41 grid 
computations requiring up to 260 Mb of work space. 
Typically, 100 unsteady iterations and 5 to 10 steady 
Newton iterations were required to solve the problems. 
CPU times varied from one to six hours. 

4.1. Double-Glazed Window Problem 

Referring to Fig. 1, we considered a cavity enclosed by six 
impermeable boundaries, where the four planes $1, $3, $4, 

and 8 6 a r e  adiabatic and a temperature gradient is imposed 
through the two boundaries normal to the ),-direction 

on $2, T-= T1, 
(29) 

on Ss, T =  To. 

Except if mentioned explicitly, all the boundaries are 
stationary and the fluid motion is caused solely by the 
buoyancy effects and a vortex normal to the x-direction is 
expected to develop inside the cavity. In presenting our 
numerical results, we will assume that the origin of the three 
coordinate axes is the center of the cavity. Further, any 
section of the cavity perpendicular to the x, y, or z-direction 
will be called an x, y, or z-section, respectively. 

For natural convection problems, the motion of the gas 
can be characterized by two dimensionless numbers, the 
Prandtl number and the Rayleigh number, 

Pr = Cp# Ra = p2gD3cp A T (30) 
k ' # k T  ' 

where Cp is the heat capacity at constant pressure, # is the 
viscosity, k is the thermal conductivity, p is the density, g is 
the gravitational acceleration, D is a reference dimension, T 
is a reference temperature, and A T =  T j -  To is the tem- 
perature difference between the hot and cold walls. The 
reference dimension in this case is Y, the distance between 
the two isothermal walls. The two aspect ratios X / Y  and 
Z / Y  were taken equal to unity. In our computations, a 
Prandtl number of 0.67 was obtained, which is a typical 
value for gases; the two isothermal walls were kept at 
To = 300K and T I = 1 0 0 0 K  (except for the use of the 
Boussinesq approximation where T I = 4 0 0 K  ) and the 
cavity size was taken to be Y = 8 cm. The Rayleigh number 
varied between 102 and 10 6 by changing the pressure inside 
the cavity; the typical resulting pressure values ranged 
between 0.1 and 1.0 arm. 

In order to assess the quantitative accuracy of the 
developed algorithm, we compared our results to previous 
numerical experiments in two dimensions [28, 40]. We set 
the hot wall temperature at 400 K, assumed the physical 
properties to be temperature-independent and made the 
Boussinesq approximation. In order to simulate a two- 
dimensional flow, we imposed that all normal derivatives 
vanish on the boundaries normal to the x-direction Sj and 
$6. The velocity profiles at the vertical and horizontal mid- 
sections are presented in Fig. 2 for Ra = 104 and the agree- 
ment with the location and amplitude of the maximum 
velocities as given in [-28, 40] appears to be very good. We 
also compared in Fig. 2 the numerical solutions on a 
21 x 21 x 21 and a finer 41 x 41 x 41 grid to verify the grid 
independence of the results. 
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FIG. 2. Profiles of u 2 and u 3 along the vertical and horizontal 
mid-section at x=O for Ra= l04 (Boussinesq approximation) on the 
21 × 21 x 21 (--) and 41 x 41 x 41 ( - )  grids. 

The vorticity-velocity formulation was then evaluated on 
a mixed convection problem where the gas motion was 
driven by buoyancy effects as well as by vorticity generation 
on the sliding top wall $3. For this problem, the Reynolds 
number is defined as 

R e -  p u ° D ,  (31) 
# 

where -Uo (Uo > 0) is the velocity of the moving top wall. 
Our two- and three-dimensional results are compared in 
Fig. 3 with those in [28] for the case Gr/Re 2 = 0.5, where 
the Grashoff number Gr  is defined by Gr = Ra/Pr. The 
agreement again appears to be very good and the motion 
at the mid x-section is fairly well represented by the 
two-dimensional model. 

For the remaining part of this section, we discard the 
Boussinesq approximation and turn to the solution of the 
full set of governing equations (13), using a compressible 
three-dimensional model with temperature-dependent 
physical properties. The hot wall was kept at 1000 K and we 
will discuss the results for a Rayleigh number of 10 4 and 105, 
respectively. With the large variations in temperature 
inducing significant changes of the physical properties and 
prohibiting the use of the Boussinesq approximation, there 
is no symmetry in the y-direction and the center of the vor- 
tex is shifted towards the cold wall and slightly towards the 
bottom wall. As a result from our computations, the solu- 
tion is still symmetric in the x-direction. We also checked 
the importance of artificial numerical viscosity by diseretiz- 
ing the convective terms with centered or upwind differences 
and comparing the resulting numerical solutions. No 

significant differences were encountered. We also compared 
the various forms of the vorticity transport equation as 
discussed in Section 2. Whereas the use of (8) can predict 
accurately the motion in the x-sections, some slight differen- 
ces may be found in the first component of the velocity 
u~ when R a =  105, because it is smaller in magnitude. 
However, no significant changes appeared when expanding 
the term V x ( ~ x u )  in (8) as in (10). Finally, we also 
checked the grid independence of the numerical solution by 
comparing the results obtained on a 21 x 21 x 21 and a finer 
41 x 41 x 41 grid. For all Rayleigh numbers considered, we 
found very good agreement as can be seen in Fig. 4 for 
Ra = 105. 

Some aspects related to the numerical method are dis- 
cussed next. We first checked the different strategies for 
evaluating the Jacobian matrix in the case of a Rayleigh 
number equal to 104 . Obviously, the optimal choice for 
the degree of approximation in the Jacobian matrix may 
be problem-dependent and a complete discussion of the 
application of Newton's method to nonlinear elliptic 
systems is beyond the scope of this paper. However, we 
want to point out through the study of a relatively "hard" 
test problem that, although cross derivatives are present in 
the set of governing equations, they might not have to be 
taken into account in the Jacobian matrix, thus alleviating 
considerably the computer storage requirements. The con- 
verged solution for R a =  5000 was used as a starting 
estimate and the residual norm is plotted in Fig. 5 versus 
CPU time for the three strategies discussed in Section 3. 
A factor of two increase in speed is achieved, if instead of 
forming a full 19 diagonal Jacobian, a seven diagonal 
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FIG. 3. Profile of u z at (x=0, y=0) for Ra= 10 4 and Gr/Re2=0.5 
(driven-cavity problem ). 
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Jacobian is formed with only seven vector function evalua- 
tions. In this case, Newton's method is fairly insensitive to 
the neglected off-diagonal terms. If a streamfunction- 
vorticity formulation had been used instead, cross 
derivatives would also have appeared in the convective 
terms of the vorticity and energy equations, and such 
approximations in the Jacobian matrix might have proven 
to have a more critical effect on the convergence of 
Newton's method. 

Three-dimensional velocity fields have been obtained for 
various cross sections of the cavity for the cases of Ra = 1 0  4 

and 105. The results for Ra = 104 are shown in Fig. 6 for the 
three mid x, y, and z-sections. Except for x-sections near the 
lateral boundaries, the same vortex profile was found on all 
the various x-sections so that the main motion inside the 
cavity is a vortex spinning around the x-direction and, on 
the top of the cavity, the fluid goes from the hot to the cold 
wall. As mentioned earlier, the center of the vortex is shifted 
towards the cold wall and slightly towards the bottom 
wall, in distinction to the results of [2, 28], where constant 
properties were considered along with the Boussinesq 
approximation. The shift is of the order of magnitude of 
one-fourth of the cavity length. Hence there is no symmetry 
in the x-section (Fig. 6) but the solution is still symmetric 
along the x-direction. While three-dimensional effects of the 
flow field are confined to regions near the boundaries for 
Ra = 104, they become more relevant for Ra = 105. In this 
case, the most complex three-dimensional behavior in the 
flow can be found when looking at consecutive y-sections 
around the vortex center, located at y = 1.4 cm. The three 
consecutive slices of Fig. 7 show that near the vortex center 
four transverse rolls are coupled to the main vortex. Note 

also that the flow is coming up at y = 0.8 cm and down at 
y =  1.6cm as one moves closer to the cold wall. Tem- 
perature contour levels for Ra = 104 are shown in Fig. 8 for 
the mid x-section and they are qualitatively similar to those 
obtained in [2, 28]. The three-dimensional motion appears 
to have little effect on the temperature, since the isotherms 
almost overlap each other for various x-sections. 

The continuity equation can be checked for any numeri- 
cal solution by computing the nondimensional quantity 
~b = V - ( p u )  in the flow domain. Contour levels are pre- 
sented for ~b in Fig. 9 for the mid x-section in the case of 
Ra = 104 as well as for 0 = V. ~. The quantities # and 0 were 
found to be maximal on the boundaries S,_ and $5. As 
discussed in Section 2, the numerical solution of (13) can 
then be used as a starting estimate for solving (23), where 
the second velocity component equation is removed and 
replaced by the continuity equation. In all cases, the new 
solution is obtained on a single grid with only two or three 
additional Newton iterations. No relevant differences were 
found between both solutions at all Rayleigh numbers 
considered and the velocity profiles obtained on the cavity 
sections with and without the continuity equation over- 
lapped. The same conclusion holds for the heat transfer and 
temperature predictions which also coincided for both solu- 
tions. 

The local Nusselt number (Nu(z)) distributions along the 
hot and cold wall are shown in Fig. 10. They were computed 
using a dimensionless temperature gradient averaged along 
the x-direction at the heat-transfer surfaces S 2 and $5 [34]. 
The nondimensional temperature was T=(T-To)/ 
(T1-To). The local Nusselt number distributions were 
qualitatively the same as those obtained in [28] for two- 
dimensional models. The profiles for the hot and cold walls 
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FIG. 8. Isotherms for Ra = l0 4 at the mid x-section (natural convec- 
tion). 

are not symmetric with respect to z as opposed to [28].  The 
local Nusselt numbers are higher for the cold wall because 
the center of the vortex is nearer the cold wall and higher 
gradients are expected to develop in that region. The verti- 
cally averaged Nusselt numbers obtained for each x-section 
were compared to the results of [2J. Even though the study 
in [2J was for a cavity with a transverse aspect ratio of five, 
the results were still found to be in good agreement• 

4.2. Mixed-Convection Problems 

A chemical vapor deposition (CVD) reactor is studied 
next as a model for mixed-convection problems. A model 
for such a reactor is shown in Fig. 11. We assume that a fully 
developed flow at temperature To enters the reactor at x = 0. 
The outflow boundary  is located at x = X and the four other 
sidewalls $2, S~, $4, and $5 are no-slip boundaries. The 
sidewalls S 2 and Ss, normal  to the ),-direction, are adiabatic 
boundaries• The top wall $3 is kept at temperature To, thus 
simulating the case of water cooling. On  the lower wall $1, 
a heated susceptor at temperature T] = 1000 K is set up in 
the second half of the reactor (x >>, X/2) and a heatup zone 
before the susceptor is simulated using a linearly ramped 
temperature profile for X/4 < x <~ X/2. 

As discussed in 1-41J, the controlling numbers for the 
fluid flow are the Grashof  number  Gr and the Reynolds 
number  Re given by 

Ra proD 
Gr =-x--, R e =  , (32) 

v r  P 

where Vo represents the average inlet gas velocity and D, a 
reference dimension, is the height of the reactor Z. Results 
for our numerical model will be presented for Z = 2 cm and 
the two aspect ratios X/Z and Y/Z are equal to four and 
three, respectively. The flow domain was discretized using 
a 31 x21 x 16 uniform mesh. Further,  an "approximate 
partial" Jacobian has been used in the solution procedure 
and no difficulties in the convergence of Newton 's  method 
were encountered. 
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Typical Rayleigh numbers for CVD reactor models are 
not larger than 103, since recirculation in the form of B6nard 
cells occurs for Ra >~ 1700 [41 ]. Results are presented here 
in the case of  Ra = 10 and Re = 1. The origin of the axes is 
the center of the inlet boundary S~. The variation of the 
longitudinal velocity component  u~ is shown in Fig. 12. One 
can see that this quantity is multiplied by a factor of two 
through the heatup zone and then increases only very 
slightly above the suspector area. Further, as a grid refine- 
ment check, we also plot in Fig. 12 the numerical results 
obtained on a 6t x41  x 31 grid obtained by doubling the 
number of grid points in each spatial direction and the 
agreement is found to be very good. Three-dimensional 
effects are present in the flow field through the existence of 
two symmetric longitudinal rolls spinning around the x-axis 
above the susceptor region. Figure 13 shows the velocity 

FIG. 11. Computational model for a Chemical Vapor Deposition 
(CVD) reactor (mixed convection problem); indices for opposite 
boundaries sum up to seven. 
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FIG. 12. Velocity profile along the reactor obtained on the coarse and 
fine grids for Ra = l0 and Re = 1; (mixed convection). 

profiles at three cross-stream sections computed using 
Eq. (7) for the vorticity transport equation. When consider- 
ing the simplified vorticity transport equation (8) instead of 
(7) in (13), we found some slight differences in the trans- 
verse velocity profiles but the resulting solution lay in the 
convergence domain of the steady Newton's method for the 
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FIG. 13. Velocity fields at various cross-stream sections; Ra = 10 and 
Re = 1; (mixed convection). 
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full set of Eqs. (13). F ina l ly ,  one can  see tha t  the vert ical  
component of the velocity u3 tends to be negat ive  on  the 
symmetry p lane  y = 0; the same result  was found  in  [ 4 2 ]  for 
a similar reactor mode l  with ad iaba t ic  sidewalls. 

The cont inui ty  e q u a t i o n  res idual  in  n o n d i m e n s i o n a l  form 
was again checked for every converged  solut ion.  In  all cases, 
we found that  mass ba lances  were satisfied wi th in  1%.  The  
residual reached its m a x i m u m  value  at the b e g i n n i n g  of the 
heatup zone and  then  decreased a long  the susceptor.  I t  also 
increased near  the outf low b o u n d a r y  due to the inaccuracy  
of the outlet b o u n d a r y  condi t ion ,  which as sumed  the flow to 
be fully developed. As for n a t u r a l  convec t ion  problems,  
mass balances were satisfied for the final conservat ive  solu- 
tion which was ob t a ined  f rom the so lu t ion  of (13) with on ly  
a couple of add i t iona l  N e w t o n  i te ra t ions  on  a single grid, 
and the seven so lu t ion  fields of bo th  so lu t ions  were aga in  

found to overlap. 

5. CONCLUSIONS 

In this paper,  we have developed a coupled  N a v i e r -  
Stokes/energy e q u a t i o n  finite-difference a p p r o x i m a t i o n  
using a vort ici ty-velocity fo rmula t ion .  The  basic  gove rn ing  
equations are expressed in  terms of three Poisson- l ike  equa-  
tions for the velocity c o m p o n e n t s ,  together  with a vor t ie i ty  
transport equa t i on  a n d  an  energy equa t ion .  The  resul t ing 

seven coupled par t ia l  differential  equa t ions ,  which have 
not been previously appl ied  to p rob l ems  related to three- 
dimensional compress ib le  flows are solved by  a finite 
difference m e t h o d  on  a single grid. A l though  this fo rmula -  
tion may no t  gua ran tee  mass  conserva t ion ,  the conserva t ive  
solution can still be ob t a ined  on  a single grid with on ly  a 
couple of add i t iona l  N e w t o n  i te ra t ions  us ing the n o n c o n s e r -  
vative solut ion as an  ini t ia l  guess. The  fo rmu l a t i on  is found  
to produce a stable so lu t ion  a lgor i thm wi t h o u t  requ i r ing  the 
use of a staggered grid. Fur ther ,  fluid m o t i o n  a n d  heat  
transfer propert ies  were very well predic ted  by the n o n c o n -  
servative solut ion.  
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